Black Soldier Fly (Hermetia illucens L.) larvae as a sustainable protein source for animal feed

Authors

  • Ishaya Usman Gadzama School of Agriculture and Food Sustainability, University of Queensland, Gatton, QLD 4343, Australia Author https://orcid.org/0000-0001-5434-259X
  • Abdullateef Akolawole Idris Department of Animal Production, Faculty of Agriculture, University of Jos, Plateau State 930001, Nigeria Author https://orcid.org/0009-0003-4346-1536
  • Oyeyemi Kunmi Sherifdeen Department of Animal Health and Production, Federal University of Agriculture, Abeokuta, Ogun State 111101, Nigeria Author
  • Michael Idowu Babajide Department of Animal Science, University of Ibadan, Ibadan, Oyo State 200005, Nigeria Author https://orcid.org/0009-0007-4234-2155
  • Yolanda Dehwe Department of Livestock Sciences, Faculty of Agriculture, Environment and Food Systems, University of Zimbabwe, Mount Pleasant, Harare, 263, Zimbabwe Author https://orcid.org/0009-0001-7103-1491
  • Samuel Usen Essien Department of Animal Health and Production, Federal University of Agriculture, Abeokuta, Ogun State 111101, Nigeria Author https://orcid.org/0009-0005-6047-5889
  • Adeola Oluwabunmi Ojugbele Department of Animal Science, University of Ibadan, Ibadan, Oyo State 200005, Nigeria Author https://orcid.org/0009-0006-0620-0638
  • Methun Chandra Dey Institute of Livestock Science and Technology, Netrokona 2400, Bangladesh Author https://orcid.org/0009-0005-1007-4593
  • Rutendo Paida Magaya Department of Livestock Sciences, Faculty of Agriculture, Environment and Food Systems, University of Zimbabwe, Mount Pleasant, Harare, 263, Zimbabwe Author
  • Vanessa Anesu Mutimaamba Department of Livestock Sciences, University of Zimbabwe, Churchill Ave, Harare 630, Zimbabwe Author https://orcid.org/0009-0006-9666-9658
  • Bada Mubarak Mobolaji Department of Animal Science, University of Ibadan, Ibadan, Oyo State 200005, Nigeria Author https://orcid.org/0009-0002-5800-6838
  • Fahad Bin Islam Department of General Animal Science and Animal Nutrition Faculty of Animal Science and Veterinary Medicine Patuakhali Science and Technology University Khanpura, Babuganj, Barishal 8200, Bangladesh Author https://orcid.org/0000-0003-4639-6832
  • Olatinwo Opeyemi Faruk Department of Animal Health and Production, Federal University of Agriculture, Abeokuta, Ogun State 111101, Nigeria Author https://orcid.org/0009-0004-0790-6523
  • Collins Lawrence Omogiade Department of Animal Science and Technology, School of Agriculture and Agricultural Technology, Federal University of Technology, Owerri, Imo State 460114, Nigeria Author https://orcid.org/0009-0008-1169-2125
  • Henry Chukwuebuka Chime Department of Animal Resources Science, Dankook University 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungcheongnam-do - 31116, South Korea Author https://orcid.org/0009-0005-8385-1736

DOI:

https://doi.org/10.61308/EHYX2367

Keywords:

Black soldier fly larvae, Hermetia illucens, processing method, nutritional quality, fatty acid, antimicrobial peptides

Abstract

Black soldier fly (Hermetia illucens L., Diptera: Stratiomyidae) larvae (BSFL) farming offers a dual solution for Africa by converting organic waste into nutrient-rich protein for animal feed and organic fertiliser (frass), addressing urban waste challenges and reducing reliance on unsustainable imports, such as fishmeal. However, realising these potential hinges on developing safe, efficient, scalable, and economically viable processing methods suitable for African conditions. A comprehensive literature search was conducted across academic databases (Google Scholar, ScienceDirect, Scopus, PubMed, Web of Science) using keywords such as "black soldier fly larvae processing," "nutritional composition," and "antimicrobial properties." Peer-reviewed studies, technical reports, and conference papers were included to assess the impacts of harvesting, decontamination, drying, and nutrition. Optimising key steps is essential: robust harvesting (sieving or auto-collection depending on larval stage, substrate humidity, and particle size), effective microbial reduction via post-harvest processing (feed withdrawal, washing protocols needing refinement, especially for contaminated waste), killing methods (freezing, blanching, asphyxiation, mechanical disruption, each impacting nutritional quality, microbial safety, and animal welfare differently), and decontamination. Drying methods (low-temperature air, high-temperature air, oven, microwave, and freeze-drying) significantly influence the final product's safety, nutritional retention, and economic viability, involving trade-offs between speed, energy efficiency, protein and fat preservation, and cost. The nutritional composition of BSFL (protein: 27.54-55.42%, fat: 8.10-57.80%, ash: 3.90-33.0%, chitin: 3.87-9.62%) and functional properties (antimicrobial peptides, lauric acid; up to 52% of lipids) are highly variable, primarily dictated by the rearing substrate. This offers opportunities for tailored production but requires strict control of substrate safety to avoid heavy metal accumulation. Processing choices also directly impact protein digestibility and amino acid profiles. Optimising these processing parameters is fundamental to ensuring a safe, nutritious, and stable insect meal that meets regulatory standards, reduces post-harvest losses, improves economic viability for small-scale farmers, and unlocks the role of BSFL in circular economies, food security, waste management, and climate-resilient agriculture across Africa.

References

Alexandratos, N. & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision (ESA Working Paper No. 12-03). FAO.

Ames, J. M. (1990). Control of the Maillard reaction in food systems. Trends in Food Science & Technology, 1, 150 - 154. https://doi.org/10.1016/0924-2244(90)90017-6.

Armstrong, J. W., Tang, J. & Wang, S. (2009). Thermal death kinetics of Mediterranean, Malaysian, melon, and oriental fruit fly (Diptera: Tephritidae) eggs and third instars. Journal of Economic Entomology, 102(2), 522 - 532. https://doi.org/10.1603/029.102.0220.

Attia, Y. A., Bovera, F., Asiry, K. A., Alqurashi, S. & Alrefaei, M. S. (2023). Fish and Black Soldier Fly Meals as Partial Replacements for Soybean Meal Can Affect Sustainability of Productive Performance, Blood Constituents, Gut Microbiota, and Nutrient Excretion of Broiler Chickens. Animals, 13(17), 2759. https://doi.org/10.3390/ani13172759

AU-IBAR (2016). Livestock policy landscape in Africa: A review. http://repository.au-ibar.org/handle/123456789/1225.

Badre, N. H., Martin, M. E. & Cooper, R. L. (2005). The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 140(3), 363 - 376.

Barden, L. & Decker, E. A. (2016). Lipid oxidation in low-moisture food: A review. Critical Reviews in Food Science and Nutrition, 56(15), 2467 - 2482. https://doi.org/10.1080/10408398.2013.848833.

Barragan-Fonseca, K. B., Dicke, M. & van Loon, J. J. A. (2017). Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed – A review. Journal of Insects as Food and Feed, 3, 105- 120. https://doi.org/10.3920/JIFF2016.0055.

Batish, I., Brits, D., Valencia, P., Miyai, C., Rafeeq, S., Xu, Y., Galanopoulos, M., Sismour, E. & Ovissipour, R. (2020). Effects of enzymatic hydrolysis on the functional properties, antioxidant activity and protein structure of black soldier fly (Hermetia illucens) protein. Insects, 11, 876. https://doi.org/10.3390/insects11120876.

Bava, L., Jucker, C., Gislon, G., Lupi, D., Savoldelli, S., Zucali, M. & Colombini, S. (2019). Rearing of Hermetia illucens on different organic by-products: Influence on growth, waste reduction, and environmental impact. Animals, 9(6), 289. https://doi.org/10.3390/ani9060289.

Belhadj Slimen, I., Yerou, H., Ben Larbi, M., M'Hamdi, N. & Najar, T. (2023). Insects as an alternative protein source for poultry nutrition: a review. Frontiers in Veterinary Science, 10, 1200031. https://doi.org/10.3389/fvets.2023.1200031.

Bessa, L. W., Pieterse, E., Marais, J. & Hoffman, L. C. (2020). Why for feed and not for human consumption? The black soldier fly larvae. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2747 - 2763. https://doi.org/10.1111/1541-4337.12609.

Bosch, G., Vervoort, J. J. M. & Hendriks, W. H. (2016). In vitro digestibility and fermentability of selected insects for dog foods. Animal Feed Science and Technology, 221, 174 - 184. https://doi.org/10.1016/j.anifeedsci.2016.08.018.

Bosch, G., Zhang, S., Oonincx, D. G. A. B. & Hendriks, W. H. (2014). Protein quality of insects as potential ingredients for dog and cat foods. Journal of Nutritional Science, 3, e29. https://doi.org/10.1017/jns.2014.23.

Bosch, G., Loureiro, B. A., Schokker, D., Kar, S. K., Paul, A. & Sluczanowski, N. (2024). Black soldier fly larvae meal in an extruded food: effects on nutritional quality and health parameters in healthy adult cats. Journal of Insects as Food and Feed, 1(aop), 1 - 12. https://doi.org/10.1163/23524588-00001093.

Brust, M. L., Hoback, W. W. & Wright, R. J. (2007). Immersion tolerance in rangeland grasshoppers (Orthoptera: Acrididae). Journal of Orthoptera Research, 16(2), 135 - 138. https://doi.org/10.1665/1082-6467(2007)16[135:ITIRGO]2.0.CO;2.

Caligiani, A., Marseglia, A., Sorci, A., Bonzanini, F., Lolli, V., Maistrello, L. & Sforza, S. (2019). Influence of the killing method of the black soldier fly on its lipid composition. Food Research International, 116, 276 - 282. https://doi.org/10.1016/j.foodres.2018.08.033.

Campbell, M., Ortuno, J., Stratakos, A. C., Linton, M., Corcionivoschi, N., Elliott, T., Koidis, A. & Theodoridou, K. (2020). Impact of thermal and high-pressure treatments on the microbiological quality and in vitro digestibility of black soldier fly (Hermetia illucens) larvae. Animals, 10(4), 682. https://doi.org/10.3390/ani10040682.

Caparros Megido, R., Poelaert, C., Ernens, M., Liotta, M., Blecker, C., Danthine, S., Tyteca, E., Haubruge, É., Alabi, T., Bindelle, J. & Francis, F. (2018). Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Research International, 106, 503 - 508. https://doi.org/10.1016/j.foodres.2018.01.002.

Cappellozza, S., Leonardi, M. G., Savoldelli, S., Carminati, D., Rizzolo, A., Cortellino, G., Terova, G., Moretto, E., Badaile, A., Concheri, G., Saviane, A., Bruno, D., Bonelli, M., Caccia, S., Casartelli, M. & Tettamanti, G. (2019). A first attempt to produce proteins from insects by means of a circular economy. Animals, 9(5), 278. https://doi.org/10.3390/ani9050278.

Çenesiz, A. A. & Çiftci, I. (2020). Modulatory effects of medium chain fatty acids in poultry nutrition and health. World’s Poultry Science Journal, 76, 234 - 248. https://doi.org/10.1080/00439339.2020.1739595.

Charlton, A. J., Dickinson, M., Wakefield, M. E., Fitches, E., Kenis, M., Han, R., Zhu, F., Kone, N., Grant, M., Devic, E., Bruggeman, G., Prior, R. & Smith, R. (2015). Exploring the chemical safety of fly larvae as a source of protein for animal feed. Journal of Insects as Food and Feed, 1(1), 7 - 16. https://doi.org/10.3920/JIFF2014.0008.

Cheng, J. Y. K., Chiu, S. L. H. & Lo, I. M. C. (2017). Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion. Waste Management, 67, 315 - 323. https://doi.org/10.1016/j.wasman.2017.05.003.

Cheng, W., Lei, J., Ahn, J. E., Wang, Y., Lei, C. & Zhu-Salzman, K. (2013). CO₂ enhances effects of hypoxia on mortality, development, and gene expression in cowpea bruchid, Callosobruchus maculatus. Journal of Insect Physiology, 59(11), 1160 - 1168. https://doi.org/10.1016/j.jinsphys.2013.09.004.

Chia, S. Y., Tanga, C. M., Osuga, I. M., Cheseto, X., Ekesi, S., Dicke, M. & van Loon, J. J. A. (2020). Nutritional composition of black soldier fly larvae feeding on agro-industrial by-products. Entomologia Experimentalis et Applicata, 168, 472 - 481. https://doi.org/10.1111/eea.12940.

Churchward, C. P., Alany, R. G. & Snyder, L. A. S. (2018). Alternative antimicrobials: The properties of fatty acids and monoglycerides. Critical Reviews in Microbiology, 44, 561 - 570. https://doi.org/10.1080/1040841X.2018.1467875.

Clark, M. A. (1982). Effect of CO₂ on neurons of the house cricket, Acheta domestica. Journal of Neurobiology, 14(3), 237 - 250. https://doi.org/10.1002/neu.480140305.

Dabbou, S., Ferrocino, I., Gasco, L., Schiavone, A., Trocino, A., Xiccato, G., Barroeta, A. C., Maione, S., Soglia, D., Biasato, I., Cocolin, L., Gai, F. & Nucera, D. M. (2020). Antimicrobial Effects of Black Soldier Fly and Yellow Mealworm Fats and Their Impact on Gut Microbiota of Growing Rabbits. Animals, 10(8), 1292. https://doi.org/10.3390/ani10081292.

Day, M. F. & Powning, R. F. (1949). A study of the processes of digestion in certain insects. Australian Journal of Biological Sciences, 2, 175 - 215. https://doi.org/10.1071/BI9490175.

de Castro, R. J. S., Ohara, A., Aguilar, J. G. d. S. & Domingues, M. A. F. (2018). Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends in Food Science & Technology, 76, 82 - 89. https://doi.org/10.1016/j.tifs.2018.04.006.

Dercon, S. & Gollin, D. (2014). Agriculture in African development: Theories and strategies. Annual Review of Resource Economics, 6(1), 471 - 492. https://doi.org/10.1146/annurev-resource-100913-012706.

Dickson, J. S. & Anderson, M. E. (1992). Microbial decontamination of food animal carcasses by washing and sanitizing systems: A review. Journal of Food Protection, 55(2), 133 - 140. https://doi.org/10.4315/0362-028X-55.2.133.

DiGiacomo, K. & Leury, B. J. (2019). Review: Insect meal: A future source of protein feed for pigs? Animal, 13, 3022 - 3030. https://doi.org/10.1017/S1751731119001873.

Diener, S., Studt Solano, N. M., Roa Gutiérrez, F., Zurbrügg, C. & Tockner, K. (2011). Biological treatment of municipal organic waste using black soldier fly larvae. Waste and Biomass Valorization, 2(4), 357 - 363. https://doi.org/10.1007/s12649-011-9079-1.

Do, S., Koutsos, E. A., McComb, A., Phungviwatnikul, T., de Godoy, M. R. C. & Swanson, K. S. (2022). Palatability and apparent total tract macronutrient digestibility of retorted black soldier fly larvae-containing diets and their effects on the faecal characteristics of cats consuming them. Journal of Animal Science, 100(4), skac068. https://doi.org/10.1093/jas/skac068.

Eggink, K. M., Pedersen, P. B., Lund, I. & Dalsgaard, J. (2022). Chitin digestibility and intestinal exochitinase activity in Nile tilapia and rainbow trout fed different black soldier fly larvae meal size fractions. Aquaculture Research, 53, 5536 - 5546. https://doi.org/10.1111/are.16035.

Elhag, O., Zhou, D., Song, Q., Soomro, A. A., Cai, M., Zheng, L., Yu, Z. & Zhang, J. (2017). Screening, expression, purification and functional characterization of novel antimicrobial peptide genes from Hermetia illucens (L.). PLoS ONE, 12, e0169582. https://doi.org/10.1371/journal.pone.0169582.

Elhag, O., Zhang, Y., Xiao, X., Cai, M., Zheng, L., Jordan, H. R., Tomberlin, J. K., Huang, F., Yu, Z. & Zhang, J. (2022). Inhibition of zoonotic pathogens naturally found in pig manure by black soldier fly larvae and their intestine bacteria. Insects, 13(1), 66.

Erens, J., Es van, S., Haverkort, F., Kapsomenou, E. & Luijben, A. (2012). A bug's life: Large-scale insect rearing in relation to animal welfare (p. 57). Wageningen University.

Espinoza-Fuentes, F. P. & Terra, W. R. (1987). Physiological adaptations for digesting bacteria: Water fluxes and distribution of digestive enzymes in Musca domestica larval midgut. Insect Biochemistry, 17(6), 809 - 817. https://doi.org/10.1016/0020-1790(87)90096-2.

Ewald, N., Vidakovic, A., Langeland, M., Kiessling, A., Sampels, S. & Lalander, C. (2020). Fatty acid composition of black soldier fly larvae (Hermetia illucens) – Possibilities and limitations for modification through diet. Waste Management, 102, 40 - 47. https://doi.org/10.1016/j.wasman.2019.10.014.

Food and Agriculture Organization (FAO). (2012). Balanced feeding for improving livestock productivity: Increase in milk production and nutrient use efficiency and decrease in methane emission (FAO Animal Production and Health Paper No. 173). http://www.fao.org/docrep/016/i3014e/i3014e00.pdf.

Farina, M. F. (2017). How method of killing crickets impacts the sensory qualities and physiochemical properties when prepared in a broth. International Journal of Gastronomy and Food Science, 8, 19 - 23. https://doi.org/10.1016/j.ijgfs.2017.03.003.

Fatima, S., Afzal, A., Rashid, H., Iqbal, S., Zafar, R., Khalid, K., Rauf, A., Majeed, M., Malik, A. & Carter, C. G. (2023). Dietary replacement of soybean meal with black soldier fly larvae meal in juvenile Labeo rohita and Catla catla: Effects on growth, nutritional quality, oxidative stress biomarkers and disease resistance. PloS One, 18(11), e0294452. https://doi.org/10.1371/journal.pone.0294452.

Feng, M., Fei, S., Xia, J., Labropoulou, V., Swevers, L. & Sun, J. (2020). Antimicrobial peptides as potential antiviral factors in insect antiviral immune response. Frontiers in Immunology, 11, 2030.

Fernandez-Cassi, X., Supeanu, A., Vaga, M., Jansson, A., Boqvist, S. & Vagsholm, I. (2019). The house cricket (Acheta domesticus) as a novel food: A risk profile. Journal of Insects as Food and Feed. https://doi.org/10.3920/jiff2018.0021.

Firmansyah, M. & Abduh, M. Y. (2019). Production of protein hydrolysate containing antioxidant activity from Hermetia illucens. Heliyon, 5, e02005. https://doi.org/10.1016/j.heliyon.2019.e02005.

Fregin, T. & Bickmeyer, U. (2016). Electrophysiological investigation of different methods of anesthesia in lobster and crayfish. PLOS ONE, 11(9), e0162894. https://doi.org/10.1371/journal.pone.0162894.

Fu, L. L., Chen, X. & Wang, Y. (2014). Quality evaluation of farmed whiteleg shrimp (Litopenaeus vannamei) treated with different slaughter processing by infrared spectroscopy. Food Chemistry, 151, 306 - 310. https://doi.org/10.1016/j.foodchem.2013.11.054.

Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, N., Opio, C., Dijkman, J. & Tempio, G. (2013). Tackling climate change through livestock: A global assessment of emissions and mitigation opportunities. FAO. https://www.cabdirect.org/cabdirect/abstract/20133417883.

Galassi, G., Jucker, C., Parma, P., Lupi, D., Crovetto, G. M., Savoldelli, S. & Colombini, S. (2021). Impact of agro-industrial byproducts on bioconversion, chemical composition, in vitro digestibility, and microbiota of the black soldier fly (Diptera: Stratiomyidae) larvae. Journal of Insect Science, 21(1), 8. https://doi.org/10.1093/jisesa/ieaa148.

Gadzama, I. U., Malcolm, J. & Malcolm, C. (2023a). Impact of drying methods on nutritional composition and energy efficiency of black soldier fly (Hermetia illucens) larvae as animal feed ingredient. In Proceedings of Recent Advances in Animal Nutrition (RAAN), Gold Coast, Queensland, Australia (July 26 – 28), 29 – 30. https://www.researchgate.net/publication/374544950.

Gadzama, I. U., Malcolm, J. & Malcolm, C. (2023b). Drying methods of black soldier fly larvae as animal feed - Turning waste into value. Presentation at the Recent Advances in Animal Nutrition - Australia (RAAN-A), Gold Coast, Australia. http://dx.doi.org/10.13140/RG.2.2.14610.22721.

Gadzama, I. U., Malcolm, J. & Malcolm, C. (2024). Mineral composition in black soldier fly larvae: A promising alternative to fishmeal and soybean meal in livestock feed. In Proceedings of the 35th Biennial Conference of the Australian Association of Animal Sciences and the 20th Asian-Australasian Association of Animal Production Societies, 35, 334 - 335. Melbourne: Australian Association of Animal Sciences. Available from: https://www.researchgate.net/publication/383122248.

Gadzama, I. U., Mugweru, I. M., Makombe, W. S., Madungwe, C., Hina, Q., Omofunmilola, E. O., Panuel, P., Olanrewaju, T. J. & Ray, S. (2025). Improving poultry production with black soldier fly larvae. Acta Scientific Agriculture, 9(1), 60 - 77. Available online: https://www.researchgate.net/publication/387579596.

Gadzama, I. U. (2024). Influence of rearing substrate on black soldier fly larvae nutritional value for animal feed. Wikifarmer. Available online: https://www.researchgate.net/publication/383121796

Gadzama, I. U. (2025). Black soldier fly larvae as animal feed. Bulgarian Journal of Animal Husbandry, 62(1), 48 - 64. https://www.researchgate.net/publication/389350887.

Gadzama, I. U. & Panuel, P. (2024). Black Soldier Fly Larvae: A Sustainable Solution to Antimicrobial Resistance in Livestock Farming. Wikifarmer. (Accessed on 29 May 2025) from https://www.researchgate.net/publication/383877561

Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J. & Jebb, S. A. (2018). Meat consumption, health, and the environment. Science, 361(6399), eaam5324. https://doi.org/10.1126/science.aam5324.

Gura, S. (2008). Industrial livestock production and its impact on smallholders in developing countries (Consultancy Report to the League for Pastoral Peoples and Endogenous Livestock Development). http://www.pastoralpeoples.org/docs/gura_ind_livestock_prod.pdf.

Haidari, H., Melguizo-Rodríguez, L., Cowin, A. J. & Kopecki, Z. (2023). Therapeutic potential of antimicrobial peptides for treatment of wound infection. American journal of physiology. Cell physiology, 324(1), C29 - C38. https://doi.org/10.1152/ajpcell.00080.2022.

Hammer, L., Moretti, D., Abbühl-Eng, L., Kandiah, P., Hilaj, N., Portmann, R. & Egger, L. (2023). Mealworm larvae (Tenebrio molitor) and crickets (Acheta domesticus) show high total protein in vitro digestibility and can provide good-to-excellent protein quality as determined by in vitro DIAAS. Frontiers in Nutrition, 10, 1150581. https://doi.org/10.3389/fnut.2023.1150581.

Hashem, M. Y., Ahmed, S. S., El-Mohandes, M. A., Hussain, A. R. E. & Ghazy, S. M. (2014). Comparative effectiveness of different modified atmospheres enriched with carbon dioxide and nitrogen on larval instars of almond moth Ephestia cautella (Walker) (Lepidoptera: Pyralidae). Journal of Stored Products Research, 59, 314 - 319. https://doi.org/10.1016/j.jspr.2014.06.003.

Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M. C., Thornton, P. K. & Obersteiner, M. (2013). Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proceedings of the National Academy of Sciences, 110(52), 20888 - 20893. https://doi.org/10.1073/pnas.1308149110.

Huang, C., Feng, W., Xiong, J., Wang, T., Wang, W., Wang, C. & Yang, F. (2019). Impact of drying method on the nutritional value of the edible insect protein from black soldier fly (Hermetia illucens L.) larvae: Amino acid composition, nutritional value evaluation, in vitro digestibility, and thermal properties. European Food Research and Technology, 245, 11 - 21. https://doi.org/10.1007/s00217-018-3136-y.

Huan, Y., Kong, Q., Mou, H. & Yi, H. (2020). Antimicrobial peptides: classification, design, application and research progress in multiple fields. Frontiers in microbiology, 11, 582779.

Hu, Y., He, F., Mangian, H., Lambrakis, L., Saad, F. M. & de Godoy, M. R. C. (2020). PSVI-26 Insect meals as novel protein sources in wet pet foods for adult cats. Journal of Animal Science, 98(Supplement_4), 315. https://doi.org/10.1093/jas/skaa278.561.

Husain, M., Sukirno, S., Mehmood, K., Tufail, M., Rasool, K. G., Alwaneen, W. S. & Aldawood, A. S. (2017). Effectiveness of carbon dioxide against different developmental stages of Cadra cautella and Tribolium castaneum. Environmental Science and Pollution Research, 24(14), 12787 - 12795. https://doi.org/10.1007/s11356-017-8914-y.

Janssen, R. H., Lakemond, C. M., Fogliano, V., Renzone, G., Scaloni, A. & Vincken, J. P. (2017). Involvement of phenoloxidase in browning during grinding of Tenebrio molitor larvae. PLoS One, 12(12), e0189685.

Kar, S. K., Schokker, D., Harms, A. C., Kruijt, L., Smits, M. A. & Jansman, A. J. M. (2021). Local intestinal microbiota response and systemic effects of feeding black soldier fly larvae to replace soybean meal in growing pigs. Scientific Reports, 11(1), 15088. https://doi.org/10.1038/s41598-021-94604-8.

Khan, S. H. (2018). Recent advances in role of insects as alternative protein source in poultry nutrition. Journal of Applied Animal Research, 46(1), 1144 - 1157.

Khan, S., Shi, X., Cai, R., Shuai, Z., Mao, W., Khan, I.M., Swelum, A. A. & Guo, J. (2024). Effect of black soldier fly (Hermetia illucens) larvae meal and oil on the performance, biochemical profile, intestinal health and gut microbial dynamics in laying hens. Poultry Science, 103(12), 104460. https://doi.org/10.1016/j.psj.2024.104460.

Kierończyk, B., Rawski, M., Mikołajczak, Z., Szymkowiak, P., Stuper-Szablewska, K. & Józefiak, D. (2023). Black soldier fly larva fat in broiler chicken diets affects breast meat quality. Animals, 13(7), 1137. https://doi.org/10.3390/ani13071137.

Komatsu, Y., Tsuda, M., Wada, Y., Shibasaki, T., Nakamura, H. & Miyaji, K. (2023). Nutritional evaluation of milk-, plant-, and insect-based protein materials by protein digestibility using the INFOGEST digestion method. Journal of Agricultural and Food Chemistry, 71, 2503 - 2513. https://doi.org/10.1021/acs.jafc.2c07273.

Kouřimská, L. & Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22–26. https://doi.org/10.1016/j.nfs.2016.07.001.

Kroncke, N., Grebenteuch, S., Keil, C., Demtroder, S., Kroh, L., Thunemann, A. F., Benning, R. & Haase, H. (2019). Effect of different drying methods on nutrient quality of the yellow mealworm (Tenebrio molitor L.). Insects, 10(4), 84. https://doi.org/10.3390/insects10040084.

Lalander, C. H., Fidjeland, J., Diener, S., Eriksson, S. & Vinneras, B. (2015). High waste-to-biomass conversion and efficient Salmonella spp. reduction using black soldier fly for waste recycling. Agronomy for Sustainable Development, 35, 261 - 271. https://doi.org/10.1007/s13593-015-0301-9.

Lee, H. W., Park, Y.-S., Jung, J.-S. & Shin, W.-S. (2002). Chitosan oligosaccharides, dp 2–8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe, 8, 319 - 324. https://doi.org/10.1016/S1075-9964(03)00030-1.

Leni, G., Caligiani, A. & Sforza, S. (2019). Killing method affects the browning and the quality of the protein fraction of Black Soldier Fly (Hermetia illucens) prepupae: A metabolomics and proteomic insight. Food Research International, 115, 116 - 125. https://doi.org/10.1016/j.foodres.2018.08.021.

Li, S. L., Ji, H., Zhang, B. X., Tian, J. J., Zhou, J. S. & Yu, H. B. (2016). Influence of black soldier fly (Hermetia illucens) larvae oil on growth performance, body composition, tissue fatty acid composition and lipid deposition in juvenile jian carp (Cyprinus carpio var. Jian). Aquaculture, 465, 43 - 52. https://doi.org/10.1016/j.aquaculture.2016.07.021.

Liland, N. S., Biancarosa, I., Araujo, P., Biemans, D., Bruckner, C. G., Waagbø, R., Torstensen, B. E. & Lock, E.-J. (2017). Modulation of nutrient composition of black soldier fly (Hermetia illucens) larvae by feeding seaweed-enriched media. PLOS ONE, 12(8), e0183188. https://doi.org/10.1371/journal.pone.0183188.

Llor, C. & Bjerrum, L. (2014). Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Therapeutic Advances in Drug Safety, 5(6), 229 - 241.

Liu, X., Chen, X., Wang, H., Yang, Q., ur Rehman, K., Li, W., Cai, M., Li, Q., Mazza, L., Zhang, J., Yu, Z. & Zheng, L. (2017). Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. PLoS ONE, 12, e0182601. https://doi.org/10.1371/journal.pone.0182601.

Liu, S., Wang, J., Li, L., Duan, Y., Zhang, X., Wang, T., Zang, J., Piao, X., Ma, Y., & Li, D. (2023). Endogenous chitinase might lead to differences in growth performance and intestinal health of piglets fed different levels of black soldier fly larva meal. Animal Nutrition, 14, 411 - 424. https://doi.org/10.1016/j.aninu.2023.05.008.

Lu, S., Taethaisong, N., Meethip, W., Surakhunthod, J., Sinpru, B., Sroichak, T., Archa, P., Thongpea, S., Paengkoum, S., Purba, R. A. P. & Paengkoum, P. (2022). Nutritional composition of black soldier fly larvae (Hermetia illucens L.) and its potential uses as alternative protein sources in animal diets: A review. Insects, 13, 831. https://doi.org/10.3390/insects13090831.

Luo, Y. & Song, Y. (2021). Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. International Journal of Molecular Sciences, 22(21), 11401.

Maezaki, Y., Tsuji, K., Nakagawa, Y., Kawai, Y., Akimoto, M., Tsugita, T., Takekawa, W., Terada, A., Hara, H. & Mitsuoka, T. (1993). Hypocholesterolemic effect of chitosan in adult males. Bioscience, Biotechnology, and Biochemistry, 57, 1439 - 1444. https://doi.org/10.1271/bbb.57.1439.

Makkar, H. P. S., Tran, G., Heuzé, V. & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1 - 33. https://doi.org/10.1016/j.anifeedsci.2014.07.008.

Manheem, K., Benjakul, S., Kijroongrojana, K. & Visessanguan, W. (2012). The effect of heating conditions on polyphenol oxidase, proteases and melanosis in pre-cooked Pacific white shrimp during refrigerated storage. Food Chemistry, 131(4), 1370 - 1375. https://doi.org/10.1016/j.foodchem.2011.10.016.

Marono, S., Piccolo, G., Loponte, R., Di Meo, C., Attia, Y. A. & Nizza, A. (2015). In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Italian Journal of Animal Science, 14(4), 3889. https://doi.org/10.4081/ijas.2015.3889.

Matin, N., Utterback, P. L. & Parsons, C. M. (2021). Phosphorus digestibility and relative phosphorus bioavailability in two dried black soldier fly larvae meals and a defatted black soldier fly larvae meal in broiler chickens. Poultry Science, 100(8), 101221. https://doi.org/10.1016/j.psj.2021.101221.

Mazlan, N. A. F., Miswan, N. A., Ahmad, S., Hassim, H. A., Jamien, E. S., Wei Ee, H., Kumari Ramiah, S. & Idrus, Z. (2024). Black soldier fly (Hermetia illucens) larvae meal for heat-stressed broiler chicken: its effects on gut health, stress biomarkers, and growth performance. Italian Journal of Animal Science, 23(1), 1391 - 1402. https://doi.org/10.1080/1828051X.2024.2401444.

McCue, M. D. (2010). Starvation physiology: Reviewing the different strategies animals use to survive a common challenge. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 156(1), 1 - 18. https://doi.org/10.1016/j.cbpa.2010.01.002.

Mekuria, W., Mekonnen, K., Thorne, P., Bezabih, M., Tamene, L. & Abera, W. (2018). Competition for land resources: Driving forces and consequences in crop-livestock production systems of the Ethiopian highlands. Ecological Processes, 7(1), 30. https://doi.org/10.1186/s13717-018-0136-4.

Mengesha, M. (2011). Climate change and the preference of rearing poultry for the demands of protein foods. Asian Journal of Poultry Science, 5(4), 135 - 143.

Mohana Devi, S. & Kim, I. H. (2014). Effect of medium chain fatty acids (MCFA) and probiotic (Enterococcus faecium) supplementation on the growth performance, digestibility and blood profiles in weanling pigs. Veterinární Medicína, 59, 527 - 535. https://doi.org/10.17221/7817-VETMED.

Moretta, A., Salvia, R., Scieuzo, C., Di Somma, A., Vogel, H., Pucci, P., Sgambato, A., Wolff, M. & Falabella, P. (2020). A bioinformatic study of antimicrobial peptides identified in the Black Soldier Fly (BSF) Hermetia illucens (Diptera: Stratiomyidae). Scientific Reports, 10, 16875. https://doi.org/10.1038/s41598-020-74017-9.

Moretta, A., Scieuzo, C., Petrone, A. M., Salvia, R., Manniello, M. D., Franco, A., Lucchetti, D., Vassallo, A., Vogel, H., Sgambato, A. & Falabella, P. (2021). Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Frontiers in cellular and infection microbiology, 11, 668632.

Moula, N., Scippo, M. L., Douny, C., Degand, G., Dawans, E. & Cabaraux, J. F. (2018). Performances of local poultry breed fed black soldier fly larvae reared on horse manure. Animal Nutrition, 4(1), 73 - 78. https://doi.org/10.1016/j.aninu.2017.10.002.

Mumcuoglu, K. Y., Miller, J., Mumcuoglu, M., Friger, M. & Tarshis, M. (2001). Destruction of bacteria in the digestive tract of the maggot of Lucilia sericata (Diptera: Calliphoridae). Journal of Medical Entomology, 38(2), 161 - 166. https://doi.org/10.1603/0022-2585-38.2.161.

Mutungi, C., Irungu, F. G., Nduko, J., Mutua, F., Affognon, H., Nakimbugwe, D., Ekesi, S. & Fiaboe, K. K. M. (2017). Postharvest processes of edible insects in Africa: A review of processing methods, and the implications for nutrition, safety and new products development. Critical Reviews in Food Science and Nutrition, 1 - 23. https://doi.org/10.1080/10408398.2017.1365330.

Newton, G. L., Booram, C. V., Barker, R. W. & Hale, O. M. (1977). Dried Hermetia illucens larvae meal as a supplement for swine. Journal of Animal Science, 44(3), 395 - 400. https://doi.org/10.2527/jas1977.443395x.

Newton, G. L., Sheppard, D. C. & Burtle, G. J. (2008). Research Briefs: Black Soldier Fly Prepupae - A Compelling Alternative to Fish Meal and Fish Oil. Aquaculture, 24, 103 - 109.

Niamnuy, C., Devahastin, S. & Soponronnarit, S. (2008). Changes in protein compositions and their effects on physical changes of shrimp during boiling in salt solution. Food Chemistry, 108(1), 165 - 175. https://doi.org/10.1016/j.foodchem.2007.10.069.

Oh, J., Kim, H., Park, K. & Kim, B. G. (2024). Drying Methods for Black Soldier Fly (Hermetia illucens) Larvae as a Feed Ingredient for Pigs Affect In Vitro Nutrient Disappearance. Agriculture, 14(10), 1792. https://doi.org/10.3390/agriculture14101792.

Patrulea, V., Borchard, G. & Jordan, O. (2020). An Update on Antimicrobial Peptides (AMPs) and Their Delivery Strategies for Wound Infections. Pharmaceutics, 12(9), 840. https://doi.org/10.3390/pharmaceutics12090840.

Pezzali, J. G. & Shoveller, A. K. (2021). The effects of a semi-synthetic diet with inclusion of black soldier fly larvae meal on health parameters of healthy adult cats. Journal of Animal Science, 99(10), skab290. https://doi.org/10.1093/jas/skab290.

Piyasena, P., Mohareb, E. & McKellar, R. C. (2003). Inactivation of microbes using ultrasound: A review. International Journal of Food Microbiology, 87(3), 207 - 216. https://doi.org/10.1016/S0168-1605(03)00075-8.

Pressman, E., Schaefer, J. M. & Kebreab, E. (2018). Mitigation of enteric methane emissions from dairy cattle in East Africa through urea treatment of crop residue feeds. In AGU Fall Meeting Abstracts, GC51K-0929.

Pretorius, Q. (2011). The evaluation of larvae of Musca domestica (common house fly) as protein source for broiler production (Master’s thesis, Stellenbosch University). Department of Animal Science, Stellenbosch University, Stellenbosch,SouthAfrica.https://scholar.sun.ac.za/bitstream/handle/10019.1/6667/pretorius_evaluation_2011.pdf?sequence=1.

Rahman, M. S. & Velez-Ruiz, J. F. (2007). Food preservation by freezing. In: Handbook of Food Preservation. CRC Press., 653 - 684.

Ramos-Bueno, R. P., González-Fernández, M. J., Sánchez-Muros-Lozano, M. J., García-Barroso, F. & Guil-Guerrero, J. L. (2016). Fatty acid profiles and cholesterol content of seven insect species assessed by several extraction systems. European Food Research and Technology, 242, 1471 - 1477. https://doi.org/10.1007/s00217-016-2647-7.

Ravi, H. K., Degrou, A., Costil, J., Trespeuch, C., Chemat, F. & Vian, M. A. (2020). Larvae mediated valorization of industrial, agriculture and food wastes: Biorefinery concept through bioconversion, processes, procedures, and products. Processes, 8, 857. https://doi.org/10.3390/pr8070857.

Reilly, L. M., Hu, Y., Von Schaumburg, P. C., De Oliveira, M. R., He, F., Rodriguez-Zas, S. L., ... & De Godoy, M. R. (2022). Chemical composition of selected insect meals and their effect on apparent total tract digestibility, faecal metabolites, and microbiota of adult cats fed insect-based retorted diets. Journal of Animal Science, 100(2), skac024. https://doi.org/10.1093/jas/skac024.

Rodríguez-Rodríguez, M., Barroso, F. G., Fabrikov, D. & Sánchez-Muros, M. J. (2022). In vitro crude protein digestibility of insects: A review. Insects, 13(8), 682. https://doi.org/10.3390/insects13080682.

Salomone, R., Saija, G., Mondello, G., Giannetto, A., Fasulo, S. & Savastano, D. (2017). Environmental impact of food waste bioconversion by insects: Application of life cycle assessment to process using Hermetia illucens. Journal of Cleaner Production, 140, 890 - 905. https://doi.org/10.1016/j.jclepro.2016.06.154.

Sándor, Z. J., Banjac, V., Vidosavljević, S., Káldy, J., Egessa, R., Lengyel-Kónya, É., Tömösközi-Farkas, R., Zalán, Z., Adányi, N., Libisch, B. & Biró, J. (2022). Apparent digestibility coefficients of black soldier fly (Hermetia illucens), yellow mealworm (Tenebrio molitor), and blue bottle fly (Calliphora vicina) insects for juvenile African catfish hybrids (Clarias gariepinus × Heterobranchus longifilis). Aquaculture Nutrition, 4717014. https://doi.org/10.1155/2022/4717014.

Sayed, W. A., Ibrahim, N. S., Hatab, M. H., Zhu, F. & Rumpold, B. A. (2019). Comparative study of the use of insect meal from Spodoptera littoralis and Bactrocera zonata for feeding Japanese quail chicks. Animals, 9(4), 136. https://doi.org/10.3390/ani9040136.

Secci, G., Bovera, F., Nizza, S., Baronti, N., Gasco, L., Conte, G. & Parisi, G. (2018). Quality of eggs from Lohmann Brown Classic laying hens fed black soldier fly meal as substitute for soya bean. Animal, 12(10), 2191 - 2197. https://doi.org/10.1017/S1751731117003603.

Sepriadi, S., Hanafi, N. D. & Sadeli, A. (2022). The effect of milk replacer containing black soldier fly on pre-weaned Ettawa crossbreed goats on performance and physiological response. In IOP Conference Series: Earth and Environmental Science, 977(1), 5. IOP Publishing. https://iopscience.iop.org/article/10.1088/1755-1315/977/1/012132.

Shang, W., Si, X., Zhou, Z., Li, Y., Strappe, P. & Blanchard, C. (2017). Characterization of faecal fat composition and gut-derived faecal microbiota in high-fat diet-fed rats following intervention with chito-oligosaccharide and resistant starch complexes. Food & Function, 8, 4374 - 4383. https://doi.org/10.1039/C7FO01244F.

Sheppard, D. C., Newton, G. L., Thompson, S. A. & Savage, S. (1994). A value added manure management system using the black soldier fly. Bioresource Technology, 50, 275 - 279. https://doi.org/10.1016/0960-8524(94)90102-3.

Shu, M. K., Li, C. M., Furtado, W. E., Huang, Q., St-Hilaire, S. & Kenéz, Á. (2024). Antibacterial properties of oil extracts of black soldier fly larvae reared on bread waste. Animal Production Science, 64(8).

Shumo, M., Osuga, I. M., Khamis, F. M., Tanga, C. M., Fiaboe, K. K. M., Subramanian, S., Ekesi, S., van Huis, A. & Borgemeister, C. (2019). The nutritive value of black soldier fly larvae reared on common organic waste streams in Kenya. Scientific Reports, 9, 10110. https://doi.org/10.1038/s41598-019-46603-z.

Singh, A. & Kumari, K. (2019). An inclusive approach for organic waste treatment and valorisation using Black Soldier Fly larvae: A review. Journal of Environmental Management, 251, 109569.

Smets, R., Verbinnen, B., Van De Voorde, I., Aerts, G., Claes, J. & Van Der Borght, M. (2020). Sequential extraction and characterisation of lipids, proteins, and chitin from black soldier fly (Hermetia illucens) larvae, prepupae, and pupae. Waste and Biomass Valorization, 11, 6455 - 6466. https://doi.org/10.1007/s12649-019-00924-2.

Smetana, S., Schmitt, E. & Mathys, A. (2019). Sustainable use of Hermetia illucens insect biomass for feed and food: Attributional and consequential life cycle assessment. Resources, Conservation & Recycling, 144, 285 - 296. https://doi.org/10.1016/j.resconrec.2019.01.042.

Son, J., Park, S. H., Jung, H. J., You, S. J. & Kim, B. G. (2023). Effects of drying methods and blanching on nutrient utilization in black soldier fly larva meals based on in vitro assays for pigs. Animals, 13(5), 858. https://doi.org/10.3390/ani13050858.

Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., De Meulenaer, B., Michiels, J., Eeckhout, M., De Clercq, P. & De Smet, S. (2017). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates: Nutritional composition of black soldier fly. Journal of the Science of Food and Agriculture, 97, 2594 - 2600. https://doi.org/10.1002/jsfa.8081.

Spranghers, T., Michiels, J., Vrancx, J., Ovyn, A., Eeckhout, M., De Clercq, P. & De Smet, S. (2018). Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Animal Feed Science and Technology, 235, 33 - 42. https://doi.org/10.1016/j.anifeedsci.2017.08.012.

Stadtlander, T., Stamer, A., Buser, A., Wohlfahrt, J., Leiber, F. & Sandrock, C. (2017). Hermetia illucens meal as fish meal replacement for rainbow trout on farm. Journal of Insects as Food and Feed, 3(3), 165 - 175. https://doi.org/10.3920/JIFF2016.0052.

St-Hilaire, S., Cranfill, K., McGuire, M. A., Mosley, E. E., Tomberlin, J. K., Newton, L., Sealey, W., Sheppard, C. & Irving, S. (2007). Fish offal recycling by the black soldier fly produces a foodstuff high in omega-3 fatty acids. Journal of the World Aquaculture Society, 38, 309 - 313. https://doi.org/10.1111/j.1749-7345.2007.00101.x.

Starcevic, K., Lozica, L., Gavrilovic, A., Heruc, Z., & Masek, T. (2019). Fatty acid plasticity of black soldier fly (Hermetia illucens) larvae reared on alternative feeding media: Crude olive cake and processed animal protein. Journal of Animal and Feed Sciences, 28, 374 - 382. https://doi.org/10.22358/jafs/114434/2019.

Surendra, K. C., Olivier, R., Tomberlin, J. K., Jha, R. & Khanal, S. K. (2016). Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renewable Energy, 98, 197 - 202. https://doi.org/10.1016/j.renene.2016.03.022.

Sypniewski, J., Kierończyk, B., Benzertiha, A., Mikołajczak, Z., Pruszyńska-Oszmałek, E., Kołodziejski, P., Sassek, M., Rawski, M., Czekała, W. & Józefiak, D. (2020). Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: effect on performance, digestibility, microbial community, immune and physiological status and final product quality. British Poultry Science, 61(3), 294 – 302. https://doi.org/10.1080/00071668.2020.1716302.

Tabata, E., Kashimura, A., Kikuchi, A., Masuda, H., Miyahara, R., Hiruma, Y., Wakita, S., Ohno, M., Sakaguchi, M., Sugahara, Y., Matoska, V., Bauer, P. O. & Oyama, F. (2018). Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Scientific Reports, 8, 1461. https://doi.org/10.1038/s41598-018-19940-8.

Tomberlin, J. K., Sheppard, D. C. & Joyce, J. A. (2002). Selected life-history traits of black soldier flies (Diptera: Stratiomyidae) reared on three artificial diets. Annals of the Entomological Society of America, 95(3), 379 - 386. https://doi.org/10.1603/0013-8746(2002)095[0379:SLHTOB]2.0.CO;2.

Tonneijck-Srpová, L., Venturini, E., Humblet-Hua, K. N. P. & Bruins, M. E. (2019). Impact of processing on enzymatic browning and texturization of yellow mealworms. Journal of Insects as Food and Feed, Advance online publication. https://doi.org/10.3920/JIFF2018.0025.

Traksele, L., Speiciene, V., Smicius, R., Alencikiene, G., Salaseviciene, A., Garmiene, G., Zigmantaite, V., Grigaleviciute, R. & Kucinskas, A. (2021). Investigation of in vitro and in vivo digestibility of black soldier fly (Hermetia illucens L.) larvae protein. Journal of Functional Foods, 79, 104402. https://doi.org/10.1016/j.jff.2021.104402.

Tschirner, M. & Simon, A. (2015). Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. Journal of Insects as Food and Feed, 1, 249 - 259. https://doi.org/10.3920/JIFF2014.0008.

Tubiello, F., Salvatore, M., Cóndor Golec, R., Ferrara, A., Rossi, S. & Biancalani, R. (2014). Agriculture, forestry and other land use emissions by sources and removals by sinks. FAO. https://www.uncclearn.org/wp-content/uploads/library/fao198.pdf.

Tzompa-Sosa, D. A., Yi, L. Y., van Valenberg, H. J. F., van Boekel, M. & Lakemond, C. M. M. (2014). Insect lipid profile: Aqueous versus organic solvent-based extraction methods. Food Research International, 62, 1087 - 1094. https://doi.org/10.1016/j.foodres.2014.05.052.

USDA (2019). FoodData Central. U.S. Department of Agriculture. https://fdc.nal.usda.gov/fdc-app.html#/.

Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G. & Vantomme, P. (2013). Edible insects: Future prospects for food and feed security. Food and Agriculture Organization of the United Nations.

Van Huis, A. & Tomberlin, J. K. (2017). Insects as food and feed: From production to consumption. Wageningen Academic Publishers.

Van Moll, L., De Smet, J., Paas, A., Tegtmeier, D., Vilcinskas, A., Cos, P. & Van Campenhout, L. (2022). In vitro evaluation of antimicrobial peptides from the black soldier fly (Hermetia illucens) against a selection of human pathogens. Microbiology Spectrum, 10, e01664 - 21. https://doi.org/10.1128/spectrum.01664-21.

Veldkamp, T., Van Duinkerken, G. & Van Huis, A. (2012). Insects as a sustainable feed ingredient in pig. Food chemistry, 50, 192 - 195.

Veldkamp, T., Dong, L., Paul, A. & Govers, C. C. F. M. (2022). Bioactive properties of insect products for monogastric animals–a review. Journal of Insects as Food and Feed, 8(9), 1027 - 1040. https://doi.org/10.3920/JIFF2021.0031.

World Health Organization (2007). Protein and amino acid requirements in human nutrition: Report of a joint WHO/FAO/UNU Expert Consultation (WHO Technical Report Series No. 935). WHO Press.

Wong-Corral, F. J., Castañé, C. & Riudavets, J. (2013). Lethal effects of CO₂-modified atmospheres for the control of three Bruchidae species. Journal of Stored Products Research, 55, 62 - 67. https://doi.org/10.1016/j.jspr.2013.07.002.

Woodring, J. P., Clifford, C. W., Roe, R. M. & Beckman, B. R. (1978). Effects of CO₂ and anoxia on feeding, growth, metabolism, water balance, and blood composition in larval female house crickets, Acheta domesticus. Journal of Insect Physiology, 24, 499 - 509. https://doi.org/10.1016/0022-1910(78)90169-7.

Woods, H. A. & Lane, S. J. (2016). Metabolic recovery from drowning by insect pupae. Journal of Experimental Biology, 219, 3126 - 3136. https://doi.org/10.1242/jeb.139337.

Wu, Q., Patočka, J. & Kuča, K. (2018). Insect Antimicrobial Peptides, a Mini Review. Toxins, 10(11), 461. https://doi.org/10.3390/toxins10110461.

Wynants, E., Crauwels, S., Lievens, B., Luca, S., Claes, J., Borremans, A., Bruyninckx, L. & Van Campenhout, L. (2017). Effect of post-harvest starvation and rinsing on the microbial numbers and the bacterial community composition of mealworm larvae (Tenebrio molitor). Innovative Food Science and Emerging Technologies, 42, 8 - 15. https://doi.org/10.1016/j.ifset.2017.05.012.

Xia, J., Ge, C. & Yao, H. (2021). Antimicrobial peptides from black soldier fly (Hermetia illucens) as potential antimicrobial factors representing an alternative to antibiotics in livestock farming. Animals, 11, 1937. https://doi.org/10.3390/ani11071937.

Xu, Y., Mao, H., Yang, C., Du, H., Wang, H. & Tu, J. (2020). Effects of chitosan nanoparticle supplementation on growth performance, humoral immunity, gut microbiota, and immune responses after lipopolysaccharide challenge in weaned pigs. Journal of Animal Physiology and Animal Nutrition, 104, 597 - 605. https://doi.org/10.1111/jpn.13283.

Yan, Y., Zhang, J., Chen, X. & Wang, Z. (2023). Effects of Black Soldier Fly Larvae (Hermetia illucens Larvae) Meal on the Production Performance and Cecal Microbiota of Hens. Veterinary sciences, 10(5), 364. https://doi.org/10.3390/vetsci10050364.

Yang, C. M., Ferket, P. R., Hong, Q. H., Zhou, J., Cao, G. T., Zhou, L. & Chen, A. G. (2012). Effect of chito-oligosaccharide on growth performance, intestinal barrier function, intestinal morphology, and cecal microflora in weaned pigs. Journal of Animal Science, 90, 2671 - 2676. https://doi.org/10.2527/jas.2011-4699.

Yi, H. Y., Chowdhury, M., Huang, Y. D. & Yu, X. Q. (2014). Insect antimicrobial peptides and their applications. Applied Microbiology and Biotechnology, 98, 5807 - 5822.

Zabulionė, A., Šalaševičienė, A., Makštutienė, N. & Šarkinas, A. (2023). Exploring the antimicrobial potential and stability of black soldier fly (Hermetia illucens) larvae fat for enhanced food shelf-life. Gels, 9(10), 793. https://doi.org/10.3390/gels9100793.

Zhou, K., Xia, W., Zhang, C. & Yu, L. (2006). In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physico-chemical properties. LWT – Food Science and Technology, 39, 1087 - 1092. https://doi.org/10.1016/j.lwt.2005.07.009.

Zulkifli, N. F. N. M., Seok-Kian, A. Y., Seng, L. L., Mustafa, S., Kim, Y.-S. & Shapawi, R. (2022). Nutritional value of black soldier fly (Hermetia illucens) larvae processed by different methods. PLOS ONE, 17, e0263924. https://doi.org/10.1371/journal.pone.0263924.

Downloads

Published

28.10.2025

How to Cite

Usman Gadzama, I., Akolawole Idris, A., Kunmi Sherifdeen, O., Idowu Babajide, M., Dehwe, Y., Usen Essien, S., Oluwabunmi Ojugbele, A., Chandra Dey, M., Paida Magaya, R., Anesu Mutimaamba, V., Mubarak Mobolaji, B., Bin Islam, F., Opeyemi Faruk, O., Lawrence Omogiade, C., & Chukwuebuka Chime, H. (2025). Black Soldier Fly (Hermetia illucens L.) larvae as a sustainable protein source for animal feed. Bulgarian Journal of Animal Husbandry, 62(5), 30-64. https://doi.org/10.61308/EHYX2367